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Abstract. Two different hybrid particle-continuum methods are described for simulation of nonequilibrium gas and 
plasma dynamics. The first technique, used for nonequilibrium hypersonic gas flows, uses either a continuum 
description or a particle method throughout a flow domain based on local conditions. This technique is successful in 
reproducing the results of full particle simulations at a small fraction of the cost.  The second method uses a 
continuum model of the electrons combined with a particle description of the ions and atoms for simulating plasma 
jets. The physical accuracy of the method is assessed through comparisons with plasma plume measurements obtained 
in space.  These examples illustrate that the complex physical phenomena associated with nonequilibrium conditions 
can be simulated with physical accuracy and numerical efficiency using such hybrid approaches. 
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INTRODUCTION 

Nonequilibrium conditions occur in the gas and plasma flows of many real systems.  One form of 
nonequilibrium concerns the generation of non-Maxwellian velocity distribution functions (VDFs).  Physically, 
such nonequilibrium is produced by very strong gradients in flow field properties, for example in shock waves 
and boundary layers, and by rarefied flow conditions.  Another form of nonequilibrium concerns different 
species in the gas or plasma having very different VDFs from one another.  In this article, a summary is provided 
of on-going development and application of two different hybrid particle-continuum methods for simulating 
these types of nonequilibrium flows.  The first method combines solution of the Navier-Stokes equations using 
traditional methods from Computational Fluid Dynamics (CFD) with the particle-based direct simulation Monte 
Carlo (DSMC) technique [1]. This hybrid method decides, based on local flow conditions, whether to use CFD 
or DSMC in each region of a flow field.  The DSMC technique is more physically accurate in strongly 
nonequilibrium regions, but is at least an order of magnitude slower than CFD.  The performance of this method 
in terms of physical accuracy and numerical efficiency is illustrated through its application to hypersonic gas 
flows.  The second hybrid method uses particle and continuum methods everywhere to simulate the plasma jets 
created by spacecraft propulsion systems [2].  In this technique, electrons are modeled using a continuum (fluid) 
approach in which their conservation equations are solved using CFD methods.  The heavy species (ions and 
atoms) are modeled using a combination of two particle methods.  The DSMC technique is again employed to 
simulate collisions while the Particle In Cell (PIC) method is used to accelerate ions self-consistently in electro-
static fields.  The performance of this hybrid method is illustrated through its application to simulate plasma jets 
created by a spacecraft Hall thruster. 

HYBRID METHOD FOR NONEQUILIBRIUM GAS FLOWS 

For relatively low altitude portions of a hypersonic vehicle entry trajectory, the atmospheric density is 
relatively high, and simulations of flows around hypersonic vehicles should be performed using traditional 
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Computational Fluid Dynamics (CFD) by solving either the Euler or the Navier-Stokes (NS) equations.  At very 
high altitudes, at the edge of an atmosphere, the density is low such that there are very few collisions between the 
molecules and atoms in the flow around the vehicle.  This rarefied flow regime can be computed using the direct 
simulation Monte Carlo (DSMC) method [3].  Relatively speaking, CFD methods for solving the NS equations 
are about an order of magnitude faster than the DSMC method.  However, the lack of collisions in the low 
density gas makes the physics of the NS equations invalid. 

A flow configuration that is characterized as being in the continuum regime overall can often contain 
localized regions of rarefied flow.  Hypersonic flow over a cylinder provides an excellent example of this 
behavior, and the relevant phenomena are illustrated in Fig. 2.  In such a flow, localized regions of rarefied flow 
may occur in: (1) the bow shock wave; (2) the boundary layer; and (3) the wake.  In the cases of the bow shock 
and boundary layer, the local rarefaction is caused by the very strong gradients that produce small localized 
length scales that in turn produce large localized Knudsen numbers.  In the wake, the density is a small fraction 
of that in the forebody flow and rarefaction is caused here directly by the associated large mean free path. 

To compute such flows with existing computational tools we face the dilemma of either: (1) using CFD and 
accepting that there will be some (unknown) error associated with inaccurate physical modeling of the locally 
rarefied regions; or (2) trying to use the DSMC technique and accepting the incredibly high computational cost, 
especially for three dimensional flows. Thus, either CFD or DSMC on its own fails to provide a comprehensive 
computational modeling capability across all flow regimes encountered by a hypersonic vehicle. A natural 
solution to this problem is to develop a hybrid simulation technique that employs a CFD method for as much of 
the flow field as possible (due to its superior numerical performance) that switches to using DSMC only in those 
regions of the flow where the flow physics description provided by the CFD method is inaccurate.   

Continuum Computational Fluid Dynamics 

Under continuum flow conditions, the traditional methods of Computational Fluid Dynamics (CFD) can be 
employed in which the basic conservation equations are solved numerically. LeMANS is a hypersonic CFD code 
that solves the 2D/3D Navier-Stokes equations using a line implicit method on general unstructured meshes.  The 
code is parallelized using domain decomposition.  Thermo-chemical non-equilibrium effects are included by 
solving separate, finite-rate energy equations for the rotational and vibrational modes, as well as individual 
species conservation equations that include source terms due to finite-rate chemistry. The ability to simulate a 
weakly ionized gas is included. Further details of the code can be found in [4].   

The Particle-Based Direct Simulation Monte Carlo Method 

The DSMC technique uses the motions and collisions of particles to perform a direct simulation of 
nonequilibrium gas dynamics [3].  A key step in DSMC is the separation of particle motion and collision.  The 
particles are first moved through physical space by the product of their individual velocities and a time-step that 
is smaller than the local mean free time.  After movement, the particle locations are fixed, the particles are 
collected into cells that have dimensions of the local mean free path, and in each of these cells a number of 
collisions is processed consistent with local flow conditions.  Macroscopic flow properties such as density and 
temperature are obtained by time-averaging particle properties in the cells over several thousand iterations.  The 
DSMC technique is the standard numerical method for simulating rarefied hypersonic flows. 

MONACO is a parallel implementation of the DSMC method in which a computational cell is taken as the 
basic unit of the simulation [5]. Using the cell as the basic unit, rather than using the particle as in the usual 
DSMC algorithm, provides great flexibility in terms of using unstructured grids and parallel domain 
decomposition.  MONACO contains models for a variety of physical phenomena including collisional 
momentum exchange, rotational energy exchange, vibrational energy exchange, chemical reactions, and wall 
collisions. 

A Hybrid CFD-DSMC Method 

A hybrid DSMC-CFD approach developed at the University of Michigan is called the Modular Particle 
Continuum (MPC) method [1] and merges existing DSMC and CFD codes.  The accuracy of a hybrid particle-
continuum method relies on the proper positioning of the DSMC-CFD interfaces. The interface must lie in near-
equilibrium regions where solution of the NS equations will introduce minimal error. Typically, particle and 



continuum regions are determined by evaluating a continuum breakdown parameter in the flow field. The MPC 
method uses the gradient-length local Knudsen number: 
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KnGLL =
λ
Q
∇Q  (1) 

where Q represents local flow quantities such as density, temperature, or velocity magnitude, λ is the local mean-
free-path.  It has been shown for hypersonic flows [6] that, in regions of the flow field where KnGLL <0.05, the 
discrepancy between a NS and DSMC solution is less than 5%. Thus, these regions could be solved using a 
continuum approach with little error. The MPC method begins with a NS solution of the entire flow field and 
then uses Eq. (1) to decompose the domain into CFD and DSMC regions.   

The MPC method uses state-based coupling to transfer information between particle and continuum regions.  
After evaluation of the breakdown parameter, the particle region is extended by a few extra cells into the 
continuum domain to create an overlap region.  The overlap regions help to improve accuracy of the DSMC 
fluxes.  Next, one row of NS and two rows of DSMC boundary cells are initialized. The DSMC and NS domains 
are then coupled by transferring information across the interfaces.  With state-based coupling, this involves 
updating the boundary conditions of each solver.  In this way, information transfer into both the particle and 
continuum regions is handled through existing boundary procedures already used by both solvers.  The DSMC 
boundary cells are continually filled with particles consistent with the flow properties in the corresponding NS 
cell using the Chapman-Enskog distribution based on the local macroscopic state and gradients, known from the 
NS solver.  As particles in the DSMC domain interact and their distributions evolve in time, the MPC method 
also tracks the macroscopic variation in each DSMC cell. In order to provide these averaged properties with 
minimal statistical scatter, a mixture of spatial and temporal averaging is used. Specifically, MPC uses a sub-
relaxation technique [7].  These averaged DSMC properties are then used to update boundary conditions for the 
NS solver. 

Figures 1 illustrate the performance of the hybrid method for computation of normal shock waves of argon. 
Normalized density profiles for a Mach 9 shock are shown in Fig. 1(a). The CFD solution of the Navier-Stokes 
equations predicts a shock that is thinner than the experimental measurements of Alsmeyer [8] whereas DSMC 
provides almost perfect agreement. The hybrid code is initialized to the incorrect CFD result and “corrects” it 
such that it also provides excellent agreement with the measured data. Figure 1(b) demonstrates the very good 
agreement obtained with the hybrid method across a range of shock Mach numbers. 

 
FIGURE 1.  Argon shock waves: (a) normalized density profile at Mach 9; (b) reciprocal shock thickness. 

 
Figures 2 illustrate the performance of the hybrid code for a two dimensional, Mach 12 flow of nitrogen over 

a cylinder. In Fig. 2(a), significant differences for the temperature contours are found between the CFD (lower) 
and DSMC (upper) solutions. Again, the hybrid simulation is initialized to the (presumably) incorrect CFD 
result, and then modifies it to provide almost perfect agreement with the full DSMC computation. Indeed, as 
illustrated in Fig. 2(b), the level of agreement between solutions from full DSMC and the hybrid method agree 
almost perfectly at the level of the velocity distribution function.  Note that the Chapman-Enskog VDFs 
generated from the NS solution are significantly different from those computed directly by DSMC (and MPC).  



Significantly, in the best case we have found thus far for two-dimensional configurations, the hybrid code 
produces essentially the same solution as full DSMC at a factor of 30 lower overall computational cost while 
using one fifth of the amount of computer memory [9].  Current work is focused on extension of the hybrid 
method to 3D and further research will be required to extend the technique to simulation of chemical reactions. 

 
FIGURE 2.  Mach 12, Kn=0.01 flow of nitrogen about a cylinder: (a) contours of translational temperature obtained with 

hybrid (MPC), DSMC, and CFD methods; (b) velocity distribution functions in the bow shock. 

HYBRID METHOD FOR NONEQUILIBRIUM PLASMA FLOWS 

Hall thrusters are an efficient form of plasma electric propulsion for spacecraft. Models have been developed 
of the plasma plume of such thrusters in order to assess spacecraft integration issues. The high energy ions 
created by the thruster can sputter spacecraft surfaces upon impact leading to possible damage and subsequent re-
deposition.  In this section, the plume of a Hall thruster is modeled using a hybrid particle-continuum approach.   

Model Description 

Hall thrusters primarily use xenon as propellant. The plasma at the exit of a Hall thruster is strongly 
nonequilibrium with different species possessing different temperatures and velocities.  Table 1 lists typical 
thruster exit conditions for the SPT-100 Hall thruster [10]. In addition, the total number density is of the order of 
1018 m-3 giving a Knudsen number greater than one that places the plasma in the rarefied flow regime. 
Computational analysis of Hall thruster plumes is regularly performed using a hybrid particle-continuum 
formulation.  The direct simulation Monte Carlo (DSMC) method [3] models the collisions of the heavy particles 
(ions and atoms). The Particle In Cell (PIC) method [11] models the transport of the ions in electric fields.  
Overall, a hybrid approach is employed in which the electrons are modeled using a fluid (continuum) description. 

Plasma Dynamics 

Hall thruster plume models employ a hybrid approach in which heavy species are treated using particles and 
the electrons are considered as a fluid. The most widely used fluid electron approach for plasma plume 
simulations is the Boltzmann model. In this approach, quasi-neutrality is assumed, which allows the ion density 
to represent the electron density. By further assuming that the electrons are isothermal, collisionless, and un-
magnetized, and that electron pressure obeys the ideal gas law, pe=nekTe, the Boltzmann relation is obtained from 
the electron momentum equation: 
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e
ln ne

ne *
 
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 
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          (2) 

where ne is the electron number density, * indicates a reference state, φ is the plasma potential, k is 
Boltzmann's constant, Te is the constant electron temperature, and e is the electron charge. The potential is then 



differentiated spatially to obtain the electric fields. Despite the simplicity of the model, these hybrid methods 
have been quite successful in simulating the far-field properties of a number of different Hall thrusters.  As 
mentioned earlier, the ions and neutrals are treated using a combination of PIC for transporting the ions in 
electrostatic fields, and DSMC for performing collisions and transporting the neutral atoms. 

All of the assumptions made in developing the Boltzmann relation are questionable in a Hall thruster plume, 
particularly in the plume near-field close to the thruster. In the present work, a more detailed approach is 
employed that considers all three steady state conservation equations of the electrons. The electron continuity 
equation is written as: 
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∇2ψ = nenaCi           (3) 
where ψ is a velocity potential (

€ 

∇ψ = nev e  and 

€ 

v e  is the electron velocity) and the right hand side involves an 
ionization source term with na as the atomic number density, and Ci the ionization rate coefficient. The spatial 
distribution of the ion particles, treated using DSMC-PIC, gives the electron number density, ne, under the 
assumption of charge neutrality. This approach allows the electron velocity vector to be determined through 
solution of Eq. (3).  

The electron momentum equation is written as a modified Ohm's Law: 
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where 
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j  is the current density and σ is the electrical conductivity.  Equation (4) is solved for using the charge 
continuity condition: 
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∇.j = 0           (5) 
to obtain the plasma potential. Finally, the electron energy equation is solved to obtain the electron temperature: 
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where κe is the electron thermal conductivity, and TH is the heavy species temperature.  The electric field is 
obtained through spatial differentiation of the plasma potential.  Traditional PIC techniques are used to weight 
the electric field to accelerate the ions in a self-consistent manner. 

Collision Dynamics 

There are two basic classes of collisions that are important in Hall thruster plumes: (1) elastic (momentum 
exchange); and (2) charge exchange. Elastic collisions involve only exchange of momentum between the 
participating particles. For the systems of interest here, this may involve atom-atom or atom-ion collisions. For 
atom-atom collisions, the Variable Hard Sphere (VHS) [3] collision model is employed. 

Charge exchange concerns the transfer of one or more electrons between an atom and an ion. For singly 
charged ions, the following cross section measured by Miller et al. [12] is used: 
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σCEX Xe,Xe+( ) = −23.3log10 g( ) +142.2( )0.8423×10−20m2       (7) 
Also reported in [12] are charge exchange cross sections for the interaction where a doubly charged ion captures 
two electrons from an atom. These cross sections are less than a factor of two lower than the values for the singly 
charged ions at corresponding energies. In the present model, it is assumed that there is no transfer of momentum 
accompanying the transfer of the electron(s). This assumption is based on the premise that charge exchange 
interactions are primarily at long range. It is further assumed that atom-ion momentum exchange cross sections 
are equal to the charge exchange cross section. 

Boundary Conditions 

For the computation of Hall thruster plumes, boundary conditions must be specified at several locations: (1) 
at the thruster exit; (2) at the cathode exit; (3) along the outer edges of the computational domain; and (4) along 
all solid surfaces in the computational domain. 

Several macroscopic properties of the plasma exiting the thruster are required to determine the boundary 
conditions. Specifically, the plasma potential, the electron temperature, and for each of the heavy species we 
require the number density, velocity, and temperature. In the real device, these properties vary radially across the 



exit plane.  The approach to determining these properties involves a mixture of analysis and estimation. The 
basic thruster performance parameters of mass flow rate, thrust, and total ion current are assumed known.  The 
neutrals are assumed to exit the thruster at the sonic speed corresponding to some assumed value for their 
temperature. Finally, divergence angles for the lower and upper edges of the exit channel must be assumed. 
Combining all this information then allows all species densities and the ion velocities to be determined. 
Determination of the properties of multiple charge states, for example Xe2+ is considered in the present study, 
requires knowledge of the current fraction of that state. 

Both fluid and particle boundary conditions are required at the outer edges of the computational domain. The 
usual field conditions employed simply set the electric fields normal to the boundary edges equal to zero. 
Similarly the gradients in electron temperature normal to the surfaces of the outer boundaries are set to zero.  The 
particle boundary condition is to simply remove from the computation any particle crossing the domain edge. 
The results presented in this article consider the thruster to be operating in the vacuum of space.  For analysis of 
thrusters operated in a vacuum chamber, the finite back pressure of the facility is included by simulating a fixed 
density background of xenon atoms at room temperature. These atoms can collide with heavy species emitted by 
the thruster and so can make an important contribution to the charge exchange plasma. In addition, the 
background atoms affect the neutral-electron collision frequency that appears in the transport coefficients of the 
electron fluid model.  

The solid wall surfaces of the Hall thruster are also included in the computation. Along these walls, the 
plasma potential is set to zero and a zero gradient electron temperature condition is employed.  Any ions 
colliding with the walls are neutralized. Both atoms and neutralized ions are scattered back into the flow field 
from the surface of the thruster wall assuming diffuse reflection at a temperature of 300 K. 

Results 

To illustrate this hybrid method, consider the plumes generated by SPT-100 Hall thrusters employed on the 
Russian Express spacecraft. A variety of sensors were employed on board the two spacecraft to characterize the 
effects of firing the Hall thrusters on the spacecraft operation and environment.  The present study focuses on 
measurements of ion energy distributions.  The analysis presented briefly here is described in more detail by 
Boyd [10].  The operating conditions of the SPT-100 Hall thruster considered in the present study are as follows: 
flow rate = 5.3 mg/s, discharge current = 4.5 A (82% is attributed to ions of which 30% by current fraction is 
attributed to Xe2+), discharge voltage = 300 V, specific impulse = 1,600 sec. The computational domain extends 
more than 10 m axially from the thruster exit and 10 m radially from the thruster centerline to cover all of the 
Express probe measurement locations. This is achieved using a mesh containing 190 by 175 non-uniform, 
rectangular cells. The radial mesh spacing at the thruster exit is 5 mm giving just 4 cells across the exit of the 
thruster.  In a typical computation, approximately 4 million particles are employed with about 60% representing 
ions (both single and double charged). The neutral atom flow is first allowed to reach a steady state by using a 
large time step. The ions are then subsequently introduced with a time step of about 10-7s. The computations 
reach a steady state for the ions after about 15,000 iterations and solutions are then averaged over a further 
10,000 iterations. The total computation time is about 24 hours on a personal computer. 

In Figs. 3(a) and 3(b), contours are shown of the xenon ion and neutral atom number densities, respectively. 
These show that the two populations follow quite different plume expansion dynamics. The bubble of charge 
exchange plasma formed vertically above the thruster exit plane can be seen clearly in Fig. 3(a). 

The ion energy distribution measured on Express in the primary beam of the thruster near to the centerline (at 
7 deg.) and a distance of 3.76 m is considered in Fig. 4(a), where the Express data is compared with the results of 
the simulation. Note, in terms of plotting style, that exact agreement between the data sets would mean that the 
solid line employed for the model results would go through the center of the horizontal bar of each column of the 
histogram used for the Express data. The data measured in space provide a narrower distribution than profiles 
measured in ground facilities and this is perhaps explained by collisional broadening present in the vacuum tank 
experiments. In Fig. 4(a), there is clearly very good agreement between the simulation and the Express data. 

The ion energy distribution obtained on Express at the large angle of 77 deg and a distance of 1.40 m is now 
considered in Fig. 4(b). This location is of particular interest since it is characterized primarily by charge 
exchange ions. The charge exchange cloud, seen in Fig. 3(a), creates electric fields that accelerate ions behind 
the thruster leading to potential unwanted interaction with the spacecraft.  Very few beam ions are expected to 
exit the Hall thruster at such large angles. In Fig. 4(b), the Express data are compared with the results from the 
simulation. A high energy structure is measured on-board the Express spacecraft that extends up to values 



associated with primary beam ions of about 260 eV. These high energies are not predicted by the model, 
although the peak of the distribution at about 28 eV is very well captured. 

 
FIGURE 3.  Plume number densities (m-3) for the SPT-100 Hall thruster: (a) Xe+; (b) Xe. 

 
 

FIGURE 4.  Ion energy distribution functions in the plume of a Hall thruster: (a) main beam; (b) charge exchange plasma. 
 

Table 1: Plasma properties at the exit of the SPT-100 Hall thruster. 
 

Property/Species Xe Xe+ Xe2+ E- 
Number Density (m-3) 1.2x1018 2.4x1017 2.6x1016 2.9x1017 
Temperature 750 K 1 eV 1 eV 6 eV 
Velocity 280 m/s 18 km/s 25 km/s -6 km/s 

 
An example of use of the hybrid method to analyze a Hall thruster experiment performed in a vacuum facility 

is shown in Fig. 5. In this case, a high power thruster operated at 10 kW in a large vacuum chamber facility is 
considered [13].  Complex geometric structures representing baffles and pumping surfaces inside the chamber 
are included in the analysis.  Future directions in the development of this hybrid technique involve extension to 
3D, inclusion of magnetic field effects, and improved consideration of the thruster cathode. 



 
FIGURE 5.  Hybrid analysis of a 10 kW Hall thruster operated in a vacuum chamber [13]: (a) mesh; (b) plasma potential. 

SUMMARY 

Numerical simulation of nonequilibrium gas and plasma dynamics represents a complex physical problem 
that can be addressed with physical accuracy and numerical efficiency using hybrid particle-continuum 
techniques. For hypersonic gas dynamics, a hybrid method was described that decomposes a flow domain into 
regions that are simulated using particle (DSMC) or continuum (CFD) methods. This technique is able to 
reproduce results from full DSMC computations at the level of the velocity distribution function while requiring 
only a fraction of the cost. For plasma jets, a hybrid method was described that uses a particle method (DSMC-
PIC) for the heavy species, and a fluid approach for the electrons. This technique makes it possible to conduct 
two-dimensional simulations in a few hours that offer excellent agreement with data measured during space 
operation of a plasma propulsion system. 
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